User Tools

Site Tools


wiki:nitrogen_removals

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
wiki:nitrogen_removals [2018/07/11 14:33] – created sebastianwiki:nitrogen_removals [2018/07/18 11:38] (current) eurac
Line 1: Line 1:
-==== Filtration of surface water by ecosystem types - Supply ====+====== Filtration of surface water by ecosystem types - Supply ======
  
-====    General description   ====+==== General description ====
  
-<font 14px/inherit;;inherit;;inherit>The Water Filtration Supply indicator represents the amount of nitrogen that is potentially filtered by ecosystems in a given municipality. This ecosystem service is calculated using the InVEST “Nutrient Delivery Ratio (NDR)” model, specifically focusing on nitrogen. A fixed value of nitrogen input is applied to all LULC classes in order to calculate the potential filtration capability as a percentage on the total input. The model uses a mass balance approach, which describes the movement of a mass of nutrients through space. Unlike more sophisticated nutrient models, the present approach does not represent the details of the nutrient cycle but rather represents the long-term, steady-state flow of nutrients through empirical relationships. A detailed description of the model can be found at: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ndr.html.</font>+The Water Filtration Supply indicator represents the amount of nitrogen that is potentially filtered by ecosystems in a given municipality. This ecosystem service is calculated using the InVEST “Nutrient Delivery Ratio (NDR)” model, specifically focusing on nitrogen. A fixed value of nitrogen input is applied to all LULC classes in order to calculate the potential filtration capability as a percentage on the total input. The model uses a mass balance approach, which describes the movement of a mass of nutrients through space. Unlike more sophisticated nutrient models, the present approach does not represent the details of the nutrient cycle but rather represents the long-term, steady-state flow of nutrients through empirical relationships. A detailed description of the model can be found at: [[http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ndr.html|http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ndr.html]]
  
-====      Input Data     ====+==== Input Data ====
  
-  * <font 14px/inherit;;inherit;;inherit>Land use map</font>  <font 14px/inherit;;inherit;;inherit>Biophysical table with data on specific coefficients regarding Land cover/land use (LULC) type, nutrients and water (listed in Table 1 of this document).</font>  <font 14px/inherit;;inherit;;inherit>Nutrient runoff proxy, a raster dataset with the yearly average amount of precipitation</font>  <font 14px/inherit;;inherit;;inherit>LAU2-NUTS2 boundaries</font>+  * Land use map 
 +  * Biophysical table with data on specific coefficients regarding Land cover/land use (LULC) type, nutrients and water (listed in Table 1 of this document). 
 +  * Nutrient runoff proxy, a raster dataset with the yearly average amount of precipitation 
 +  * LAU2-NUTS2 boundaries
  
-====      Calculation process     ====+==== Calculation process ====
  
-<font 14px/inherit;;inherit;;inherit>**(1) Prepare Input data for InVEST NDR model**</font>+**(1) Prepare Input data for InVEST NDR model**
  
 <font 14px/inherit;;inherit;;inherit>To run the model both raster and shapefile data are required. To avoid errors, it is advised to harmonize the data using the same projection, linear units, and cell size and then snapping the rasters to the DEM.</font> <font 14px/inherit;;inherit;;inherit>To run the model both raster and shapefile data are required. To avoid errors, it is advised to harmonize the data using the same projection, linear units, and cell size and then snapping the rasters to the DEM.</font>
Line 23: Line 26:
 **Table 1**: default and recalculated parameters used in the Biophysical table **Table 1**: default and recalculated parameters used in the Biophysical table
  
- \\ <font 14px/inherit;;inherit;;inherit>**Parameter**</font>\\  \\ <font 14px/inherit;;inherit;;inherit>**Field name**</font>\\  \\ <font 14px/inherit;;inherit;;inherit>**Used value**</font>\\ +  \\  <font 14px/inherit;;inherit;;inherit>**Parameter**</font>  \\  <font 14px/inherit;;inherit;;inherit>**Field name**</font>|   \\  <font 14px/inherit;;inherit;;inherit>**Used value**</font>
- \\ <font 14px/inherit;;inherit;;inherit>Nutrient load for each land use</font>\\ |  \\ <font 14px/calibri,sans-serif;;inherit;;inherit>//load_n</font>//   \\  \\ <font 14px/inherit;;inherit;;inherit>300 kg/ha</font>\\ +  \\  <font 14px/inherit;;inherit;;inherit>Nutrient load for each land use</font>|   \\   \\ <font 14px/14px;;inherit;;inherit>//load_n//</font>  \\  <font 14px/inherit;;inherit;;inherit>300 kg/ha</font>
- \\ <font 14px/inherit;;inherit;;inherit>The maximum retention efficiency for each LULC class, varying between zero and 1</font>\\  \\ <font 14px/calibri,sans-serif;;inherit;;inherit>//eff_n</font>//   \\  \\ <font 14px/inherit;;inherit;;inherit>Default</font>\\ +  \\  <font 14px/inherit;;inherit;;inherit>The maximum retention efficiency for each LULC class, varying between zero and 1</font>|   \\  <font 14px/14px;;inherit;;inherit>//eff_n//</font>  \\  <font 14px/inherit;;inherit;;inherit>Default</font>
- \\ <font 14px/inherit;;inherit;;inherit>The distance after which it is assumed that a patch of LULC retains nutrient at its maximum capacity (in meters)</font>\\  \\ <font 14px/calibri,sans-serif;;inherit;;inherit>//crit_len_n</font>//   \\  \\ <font 14px/inherit;;inherit;;inherit>Default</font>\\ +  \\  <font 14px/inherit;;inherit;;inherit>The distance after which it is assumed that a patch of LULC retains nutrient at its maximum capacity (in meters)</font>|   \\  <font 14px/14px;;inherit;;inherit>//crit_len_n//</font>  \\  <font 14px/inherit;;inherit;;inherit>Default</font>
- \\ <font 14px/inherit;;inherit;;inherit>The proportion of dissolved nutrients over the total amount of nutrients, expressed as ratio between 0 and 1</font>\\  \\ <font 14px/calibri,sans-serif;;inherit;;inherit>//proportion_subsurface_n</font>//   \\  \\ <font 14px/inherit;;inherit;;inherit>Default</font>\\ |+  \\  <font 14px/inherit;;inherit;;inherit>The proportion of dissolved nutrients over the total amount of nutrients, expressed as ratio between 0 and 1</font>|   \\  //<font 14px/14px;;inherit;;inherit>proportion_subsurface_n</font>//   \\  <font 14px/inherit;;inherit;;inherit>Default</font>|
  
 <font 14px/inherit;;inherit;;inherit>**(3) Set the other watershed parameters and Run InVEST NDR model**</font> <font 14px/inherit;;inherit;;inherit>**(3) Set the other watershed parameters and Run InVEST NDR model**</font>
Line 37: Line 40:
 **Table 2: **Additional parameters required by the model **Table 2: **Additional parameters required by the model
  
- \\ <font 14px/inherit;;inherit;;inherit>**Parameter**</font>\\  \\ <font 14px/inherit;;inherit;;inherit>**Threshold**</font>\\ +  \\  <font 14px/inherit;;inherit;;inherit>**Parameter**</font>|   \\  <font 14px/inherit;;inherit;;inherit>**Threshold**</font>
- \\ <font 14px/inherit;;inherit;;inherit>Subsurface Maximum Retention Efficiency</font>\\  \\ <font 14px/inherit;;inherit;;inherit>0.8</font>\\ +  \\  <font 14px/inherit;;inherit;;inherit>Subsurface Maximum Retention Efficiency</font>|   \\  <font 14px/inherit;;inherit;;inherit>0.8</font>
- \\ <font 14px/inherit;;inherit;;inherit>Subsurface Critical Length</font>\\  \\ <font 14px/inherit;;inherit;;inherit>150</font>\\ +  \\  <font 14px/inherit;;inherit;;inherit>Subsurface Critical Length</font>|   \\  <font 14px/inherit;;inherit;;inherit>150</font>
- \\ <font 14px/inherit;;inherit;;inherit>Threshold Flow Accumulation</font>\\  \\ <font 14px/inherit;;inherit;;inherit>1000</font>\\ +  \\  <font 14px/inherit;;inherit;;inherit>Threshold Flow Accumulation</font>|   \\  <font 14px/inherit;;inherit;;inherit>1000</font>
- \\ <font 14px/inherit;;inherit;;inherit>Borselli k parameter</font>\\  \\ <font 14px/inherit;;inherit;;inherit>2</font>\\ |+  \\  <font 14px/inherit;;inherit;;inherit>Borselli k parameter</font>|   \\  <font 14px/inherit;;inherit;;inherit>2</font>|
  
 <font 14px/inherit;;inherit;;inherit>**(4) Calculate the amount of filtered nutrients per municipality**</font> <font 14px/inherit;;inherit;;inherit>**(4) Calculate the amount of filtered nutrients per municipality**</font>
  
 <font 14px/inherit;;inherit;;inherit>The amount of nitrogen that is potentially filtered in a municipality can be calculated from the outputs of the Nutrient Delivery Ratio model by subtracting the nitrogen exported per municipality from the total nitrogen load in the same area. This value is then normalized on the area of the municipality in ha multiplied by 300kg in order to obtain the percentage of Nitrogen being potentially filtered per LAU2 polygon.</font> <font 14px/inherit;;inherit;;inherit>The amount of nitrogen that is potentially filtered in a municipality can be calculated from the outputs of the Nutrient Delivery Ratio model by subtracting the nitrogen exported per municipality from the total nitrogen load in the same area. This value is then normalized on the area of the municipality in ha multiplied by 300kg in order to obtain the percentage of Nitrogen being potentially filtered per LAU2 polygon.</font>
 +
 +{{:en:20181807water_filtration_supply.jpg?nolink&2085x1513}}
 +
 +{{:en:test_legens.jpg?nolink&500x297}}
  
 \\ \\
  
  
wiki/nitrogen_removals.1531312410.txt.gz · Last modified: 2018/07/11 14:33 by sebastian