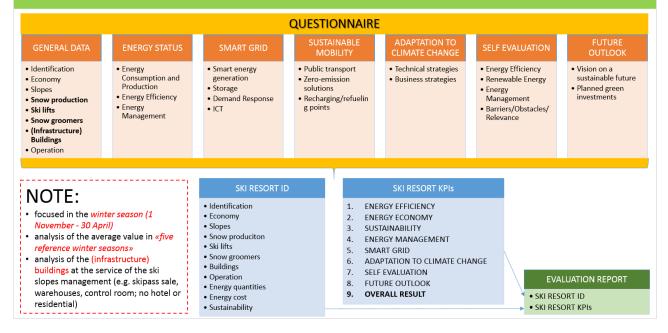


SMART ALTITUDE Wi-EMT Evaluation Report

Ski resort: xxx (yyy)

"This project is co-financed by the European Regional Development Fund through the Interreg Alpine Space programme".

Introduction


Wi-EMT is an audit tool for the ski resort operators to evaluate the ecological, energetic and management status, identifying the priorities of intervention in a comparative perspective with other ski resorts.

The input data are collected from a **QUESTIONNAIRE** filled by the ski resort. The questionnaire is a selfevaluation questionnaire and it is not validated by any third part. Each ski resort doesn't know the specific parameters of others, keeping them confidential.

The outputs are:

- **SKI RESORT ID**: main features that characterize the size, infrastructures and operation of the ski resort.
- **SKI RESORT KPIs**: measurable values that demonstrates how effectively the ski resort is achieving key business objectives.
- EVALUATION REPORT: it is a report that include the ski resort ID and the ski resort KPIs. In this way it provides supervision of the level of energy efficiency, sustainability and management in the ski resort and compares its performance with an Alpine Space reference. Beside a supervision and a comparison of the performance, the report provides a value database for further measurements of energy improvement, able to strengthen competitiveness at international scale. The Evaluation Report is divided into 9 main sections (Energy Efficiency, Energy Economy, Sustainability, Energy Management, Smart Grid, Adaptation to Climate Change, Self Evaluation, Future Outlook, Overall Result). In each main section the ski resort achieves a specific result (called KPI Key Performance Indicator) within the range 0-5, where a KPI = 0 means that the ski resort is the worst and KPI = 5 means that the ski resort is the best among the involved ski resorts. Please note that the greater the number of ski resorts involved, the greater the significance/accuracy of the results. In addition to the various KPIs of the different sections, a purely quantitative analysis is offered.

Wi-EMT : Winter Tourism Eco-Energy Management Tool

QUESTIONNAIRE

The Smart Altitude Questionnaire utilised to collect data from the ski resorts is divided in 7 sections. The structure is shown below:

SECTION	SUBSECTION	COLLECTED DATA	
GENERAL DATA	Identification	Ski resort name, country, region, municipality,	
		altitude, heating degree days	
	Economy	Turnover	
	Slopes	Length, surface, drop	
	Snow production	n. snow guns, n. snow lances, m ³ of produced snow,	
		m ³ of water storage, m ³ of water concessions	
	Ski lifts	n. & length of moving carpets, draglifts, fixed grip	
		chairlifts, fixed grip Gondola lifts, detachable	
		chairlifts, detachable Gondola lifts, total drop,	
		maximum transport capacity, total operative hours,	
		total n. of entrances	
	Snow groomers	n. of snow groomers, treated surface, drop	
	Buildings	Area	
	Operation	Days of operation, skier-days, visitors	
ENERGY STATUS	Energy Consumption &	Electrical consumption and cost (total, snow	
	Production	production, ski lifts, buildings, from the grid), PV	
		production and use, wind production and use, hydro	
		production and use, CHP production and use, Gas	
		consumption and cost, LPG consumption and cost,	
		Oil consumption and cost (total, snow groomer,	
		buildings, other), biomass consumption and cost,	
		heat pump use, DH consumption and cost, solar	
		thermal production	
	Energy Efficiency	Energy efficiency improvement on snow production,	
		ski lifts, snow groomers, buildings; % of en.red.,	
		additional/mandatory	
	Energy Management	EMS type and use, preventive maintenance,	
		dedicated office, quality standards, eco-labels	
SMART GRID		Smart electric generation	
		Powerto heat	
		Powerto gas	
		Powerto mobility	
		Electric storage	
		Demand Response	
		ICT for monitoring	
		ICT for prediction	
		ICT for control	
SUSTAINABLE MOBILITY		Public transport availability to reach the ski resort	
		Public transport availability to move within the ski	
		resort	
		Zero-emission solutions	
		E-charging/H2-refuelling points availability	
		Direct integration of RES at recharging/refueling	
		points	

ADAPTATION TO	Technical strategies	Increase snowmaking
	rechnical strategies	
CLIMATE CHANGE		Protection of snow and glaciers to avoid summer
		melting
		Increase the number of north facing ski slopes
		Increase the number of ski slopes at higher altitudes
	Business strategies	Invest in revenue diversification
		Nocturnal skiing
		Collaborations with other ski resorts
		Marketing strategies
SELF EVALUATION	Energy Efficiency	Relevant topic, doing well, impact, collaborations
		with external partners, obstacles
	Renewable Energy	Relevant topic, doing well, impact, collaborations
		with external partners, obstacles
	Energy Management	Relevant topic, doing well, impact, collaborations
		with external partners, obstacles
	Barriers/Obstacles/Relevance	No idea of measures, time&staff, missing ext.
		support, financial issues, long pay-back, relevance of
		energy cost, problems with interruption of activities
FUTURE	Vision on a sustainable	Energy cost, energy resources, climate
OUTLOOK	future	change/environmental issues, European policy
	Planned "mitigation"	Energy efficiency, RES, EMS, smart grid, sustainable
	investments	mobility, accepted pay-back
	Planned "adaptation"	Technical strategies, business strategies
	investments	
	investments	

Moreover, the following considerations have been applied in this survey:

- The analysis of the ski resort is focused in the winter season (1 November 30 April).
- Where applicable, the analysis is based on "five reference winter seasons", collecting the average value of the five most recent years, to mediate climate variability (natural snow, temperature...).
- In all the answers are considered only the buildings at the service of the ski slopes management (e.g. skipass sale, warehouses, control room; no hotel or residential).
- Finally, in the subsection "Energy Consumption & Production" are considered only the energy consumption of the ski slopes management (snow production, ski lifts, snow groomers, service buildings; not hotel or residential) and the energy production systems owned by the ski slope operator used for the ski slopes management (e.g. snow production, ski lifts, snow groomers, service buildings; not hotel or residential).

SKI RESORT ID

From the questionnaire are selected the main information that characterizes the analyzed ski resort. In a quick and intuitive way it is therefore possible to have a comprehensive overview of the size of the resort, of the main infrastructures and of the operating conditions.

IDENTIFICATION					
Ski resort name		XXX			
Country		ууу			
Minimum altitude of the slopes	ma.s.l.				
Maximum altitude of the slopes	ma.s.l.				
Average altitude of the slopes	ma.s.l.				
Average heating degree days	HDD				
ECONOMY					
Winter season turnover	€				
SLOPES					
km of slopes	km				
Surface of slopes	m ²				
Drop of slopes	m				
SNOW PRODU	CTION				
Number of snow guns					
Number of snow lances					
m ³ of produced snow	m ³				
m ³ of water storage in basins dedicated to snowmaking system	m ³				
m ³ of water concessions from the water supply network	m ³				
SKI LIFT:	S				
km of moving carpets	km				
km of draglifts	km				
km of fixed grip chairlifts	km				
km of fixed grip Gondola lifts	km				
km of deta chable chairlifts	km				
km of deta chable Gondola lifts	km				
Total drop in the winter season	m				
Ove rall maximum transport capacity	passengers/h				
Operative hours in the winter season	h				
Number of entrances in the winter season					
SNOW GROO	MERS				
Number of snow groomers					
Overall treated surface in the winter season	m ²				
Overall total drop in the winter season	m				
BUILDING	GS				
Buildings a rea	m²				
OPERATIC	DN				
Days of operation in the winter season	days				
Ove rall skier-days in the winter season					
Number of visitors in the winter season					
ENERGYQUAN	NTITIES				
Total energy consumption in the winter season	kWh				
Total electricity consumption in the winter season	kWh				
ENERGY CO					
Purchased energy commodities in the winter season	€				
Purchased gridelectricity in the winter season	€				
SUSTAINABILITY					
Use of renewable energy sources in % of total energy consumption %					
CO2 emissions in the winter season	t CO2				

SKI RESORT KPIs

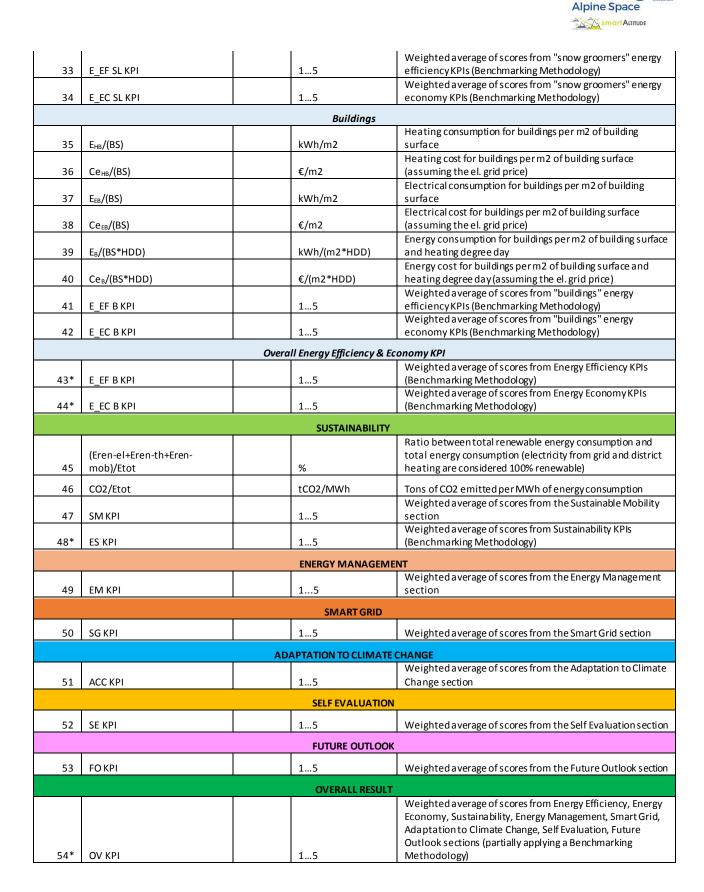
Filling the Smart Altitude Questionnaire it is possible to get measurable values that demonstrates how effectively the ski resort is achieving key business objectives.

The overall amount of designed KPIs is 54, divided into 9 sections.

The widest sections are the *Energy Efficiency* and the *Energy Economy* where are analysed the energetic and economic performances of the overall ski-resort, snow production, ski-lift, snow groomers and buildings. Overall performances are summarised with the Overall Energy Efficiency KPI and the Overall Energy Economy KPI. For these two KPIs a benchmarking analysis is applied comparing the data of all the ski resorts participating in the survey.

Another section is the *Sustainability* section where is analysed the percentage of renewable energy utilised in the area, the amount of carbon dioxide emitted and the sustainable mobility attitude. Overall performances are summarised with the Sustainability KPI. For this KPI a benchmarking analysis is applied comparing the data of all the ski resorts participating in the survey.

In the *Energy Management, Smart Grid, Adaptation to Climate Change, Self Evaluation and Future Outlook* sections are performed weighted averages of scores from the homonyms sections of the Questionnaire to get the KPIs.


As last, the Overall Ski-Resort KPI it is designed as average of scores from all the previous sections.

E_EF: Energy Efficiency; E_EC: Energy Economy; S: Sustainability; EM: Energy Management; SG: Smart Grid; ACC: Adaptation to Climate Change; SE: Self Evaluation; FO: Future Outlook

KPI COD	KPI CALCULATION	VALUE	UNIT	DESCRIPTION	
		EN	ERGY EFFICIENCY & ECC	DNOMY	
Overall ski-resort					
1	Ctot/TO		%	Estimates the relative weight of purchased energy commodities with respect to the turnover	
2	Cel/TO		%	Similar to index 1, but restricted to grid electricity	
3	Etot/TO		kWh/€	Total energy intensity	
4	Eel/TO		kWh/€	Electrical energy intensity	
5	Etot/SD		kWh/SD	Total energy consumption per skier-day	
6	Eel/SD		kWh/SD	Similar to index 5, but restricted to electricity	
7	Ctot/SD		€/SD	Total energy cost per skier-day	
8	Cel/SD		€/SD	Similar to index 7, but restricted to grid electricity	
9	Etot/d		kWh/day	Total energy consumption per working day	
10	Eel/d		kWh/day	Similar to index 9, but restricted to electricity	
11	Ctot/d		€/day	Total energy cost per working day	
12	Cel/d		€/day	Similar to index 11, but restricted to grid electricity	
13	E_EF OSR KPI		15	Weighted average of scores from "overall ski-resort" energy efficiency KPIs (Benchmarking Methodology)	
14	E EC OSR KPI		15	Weighted a verage of scores from "overall ski-resort" energy economy KPIs (Benchmarking Methodology)	
11			Snow production	content and benchmarking methodology	
15	Eel _{sP} /VSP		kWh/m3	Electricity consumption for snow production per m3 of produced snow	
16	Cel _{sP} /VSP		€/m3	Energy cost for snow production per m3 of produced snow (assuming the el. grid price)	
17	E_EF SP KPI		15	Weighted a verage of scores from "snow production" energy efficiency KPIs (Benchmarking Methodology)	
18	E_EC SP KPI		15	Weighted a verage of scores from "snow production" energy economy KPIs (Benchmarking Methodology)	
			Ski-lift		
19	Eel _{sL} /(TD)		kWh/km	Electricity consumption for ski lifts per km of drop	
20	Cel _{sL} /(TD)		€/km	Energy cost for ski lifts per km of drop (assuming the el. grid price)	
21	Eel _{sL} /(NE)		kWh/E	Electricity consumption for ski lifts per entrance	
22				Energy cost for ski lifts per entrance (assuming the el. grid	
22	Cel _{sL} /(NE) Eel _{sL} /(TD*NE)		€/E kWh/(1000km*1000 E)	price) Electricity consumption for ski lifts per 1000 km of drop and 1000 entrance	
24	Cel _{sL} /(TD*NE)		€/(1000km*1000E)	Energy cost for ski lifts per 1000 km of drop and 1000 entrance (assuming the el. grid price)	
24	E_EF SL KPI		15	Weighted average of scores from "ski-lift" energy efficiency KPIs (Benchmarking Methodology)	
26	E_EC SL KPI		15	Weighted a verage of scores from "ski-lift" energy economy KPIs (Benchmarking Methodology)	
			Snow groomers		
27	E _{sg} /(TS)		kWh/km2	Energy consumption for snow groomers per km2 of treated slope	
28	Ce _{sG} /(TS)		€/km2	Energy cost for snow groomers per km2 of treated slope	
29	E _{sG} /(GD)		kWh/km	Energy consumption for snow groomers per km of drop	
30	Ce _{sG} /(GD)		€/km	Energy cost for snow groomers per km of drop	
31	E _{sg} /(TS*GD)		kWh/km3	Energy consumption for snow groomers per km2 of treated slope and km of drop	
32	Ce _{sG} /(TS*GD)		€/km3	Energy cost for snow groomers per km2 of treated slope and km of drop	

nterreg

* defined applying a Benchmarking Methodology

Smart Altitude

SMART ALTITUDE aims at enabling and accelerating the implementation of low-carbon policies in winter tourism regions. Technical solutions for the reduction of energy consumption and GHG emissions in mountain areas relying on winter tourism today exist, with up to 40% reduction potential. However, key trade-offs are at the heart of their slow uptake: they require stronger and innovative involvement to overpass strategic (goals, priorities, risks), economic (costs, financing) and organizational (partnership, stakeholder involvement) challenges.

SMART ALTITUDE will demonstrate the efficiency of a decision support tool integrating all challenges into a step-by-step approach to energy transition. The project clearly innovates by deploying a comprehensive approach of low-carbon policy implementation based on impact maximization accounting for technical, economic and governance factors. It is based on common performance indicators, monitoring systems (snow processes, municipal infrastructure, renewables, buildings etc.) and Energy Management Systems (EMS) in mountain territories, so as to build a shared situational awareness and take impactful decisions. The approach is implemented in 3 real-field demonstrations and prepares for replication in 20 other Alpine Space territories.

The project targets policymakers, infrastructure operators, investors, tourism and entrepreneurship organisations.

Its outputs are a Territorial diagnosis method, an online Smart Altitude Toolkit, Living Labs, a Planning model for adaptation strategy implementation, a Replication roadmap and a Network of low-carbon winter tourism regions. The partnership and activities ensure the approach suitability across the Alpine Space, promote new innovations and skills, and enable policymakers to plan and prioritize measures increasing the resilience of mountain areas.

MORE INFO:

https://www.alpine-space.eu/projects/smart-altitude/en/home

